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All the simple 12- to 20-hedra with no triangular and quadrilateral facets (118 in

common) are calculated in the Schlegel projections. Among them, all the

fullerenes with 20 to 36 vertices (35 in common) are found. Thus, the  operation

is eliminated from the Fedorov algorithm up to a 21-hedra generating

procedure.

1. Introduction

The Fedorov (1893) recurrence algorithm appears to be the most

suitable tool to generate a full polyhedral variety. Nowadays, the

exact numbers of 4- to 12-hedra and simple (only three edges meet

at each vertex) 13-hedra are declared (Engel, 1994). The main

defect of the algorithm is a large amount of duplicated shapes

which are to be eliminated. Fedorov himself noted that some

simpli®cations of the algorithm were urgently required.

The well known Euler theorem states that there are no poly-

hedra without triangular, quadrilateral and pentagonal facets

simultaneously. The Fedorov idea was to ®nd the operations to

generate all kinds of polyhedra. They are as follows: �, � and  are

to obtain simple (n + 1)-hedra from simple n-hedra (n � 4), while the

reduction operation (we denote it !) is to ®nd non-simple (n + 1)-

hedra from the previously generated simple (n + 1)-hedra. More

precisely, � cuts any vertex with a new triangular facet resulting, �
cuts any edge with a new quadrilateral facet resulting and  generates

a new pentagonal facet. Fedorov (1893, p. 251) explains the latter as

follows. Let k1, k2 and k3 be adjacent edges of a simple polyhedron, k01
and k001 be adjacent to k1, and k02 and k002 adjacent to k2. Then,  cuts k01,
k001 , k02, k002 and k3. Finally, ! reduces any edge (i.e. joins two adjacent

vertices) if no triangular facets meet at it.

All the above operations are obligatory in the algorithm.

However, to optimize it, � is to generate any polyhedron with, at

least, one triangular facet, � with no triangular and, at least, one

quadrilateral facet,  with no triangular and quadrilateral and, at

least, one pentagonal facet. In the latter case, a polyhedron should

have not less than 12 pentagonal facets (see below). That is why  was

used by Fedorov to generate a dodecahedron only. It was not needed

to obtain simple 13-hedra (Voytekhovsky et al., 2000). Hence, our

idea is to independently generate a series of simple polyhedra

without triangular and quadrilateral facets to postpone the ®rst

application of  as far as possible.

2. Polyhedra characterization

Let fi be the number of i lateral facets while f, e and v are the numbers

of facets, edges and vertices of any simple polyhedron with f3 = f4 = 0,

respectively. Then

f � f5 � f6 � . . . ; 2e � 5f5 � 6f6 � . . . :

Hence,

f5 � �6f ÿ 2e� � f7 � 2f8 � 3f9 � . . . :

At the same time,

f ÿ e� v � 2; 2e � 3v:

Hence,

6f ÿ 2e � 12:

Finally,

f5 � 12� f7 � 2f8 � 3f9 � . . .

and

f � 12� f6 � 2f7 � 3f8 � 4f9 � . . . : �1�

The diophantine equation (1) was found to have 67 solutions for f =

12±20 and an obvious restriction fi � 0. For any solution, all the

possible polyhedra were built into the Schlegel projections. The

general way to build a polyhedron was to ®ll in the chosen (basal)

facet with other facet projections. As the resulting Shlegel projection

is required to save the symmetry of a polyhedron, the most expedient

way is to choose a unique facet, if any, as the basal one. For example,

in the case of 5136471 polyhedra, the only heptagonal facet was taken

as the basal one. In the case of a 5146472 polyhedra, a heptagonal facet

was taken as the basal one. In most cases, a basal facet has the

greatest number of edges. However, in the case of a 5156173

polyhedron, only the hexagonal facet should be taken as the basal

one to save the 3m symmetry of the polyhedron.

Generally, there is no algorithm that ®lls in the chosen basal facet

with other facet projections. To do this, one should use various

combinatorial methods. For example, in the simple case of the 51892

polyhedron, we choose a nonagonal facet as the basal one. After-

wards, we try to ®ll it in with other facet projections in the assumption

that two nonagonal facets are in contact with each other. This leads to

nothing. Hence, the basal facet should be surrounded by nine

pentagonal facets. Next, we assume that another nonagonal facet is in

contact with them in any position. This also leads to nothing. Finally,

we build one more ring of pentagonal facets with a nonagonal one² Correspondence address: 14 Fersman Street, 184209 Apatity, Russia.
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Figure 1
All simple 12- to 20-hedra without triangular and quadrilateral facets in the Schlegel projections. The facet symbols and symmetry point groups are given for the ®rst
representatives in the series only, 6- to 9-lateral facets are marked with numbers.



in the centre. This extremely routine procedure was made for all

equation (1) solutions and has resulted in 118 polyhedra (Fig. 1).

Their numbers, if any, are given in Table 1.

It follows from the latter that a simple f-hedron with f3 = f4 = 0

never has i-lateral facets if f < 2i + 2. However, we neither have proof

nor counter-argument to this conjecture. When proven, it could help

in further searching for the polyhedra under discussion.

The class of calculated polyhedra contains 35 fullerenes, i.e. simple

polyhedra with pentagonal and hexagonal facets only. This important

class of polyhedral molecules was specially studied by us (in col-

laboration with Dmitry G. Stepenshchikov). The symmetry point

groups for all 20- to 60-vertex fullerenes (5770 in common) will be

reported in our next paper.

3. Conclusions

All simple 12- to 20-hedra with no triangular and quadrilateral facets

are calculated. Among them, all fullerenes with 20±36 vertices are

found. Thus, the  operation is eliminated from the Fedorov recur-

rence algorithm up to a 21-hedra generating procedure. This signi®-

cantly reduces the computer time when searching even for simple 14-

and 15-hedra.

I acknowledge great bene®t from the highly skilled comments

made by the referee.
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Table 1
The number (n) of polyhedra, if any, related to the diophantine equation (1)
solutions.

f f5 f6 f7 f8 f9 n

12 12 1
14 12 2 1
15 12 3 1
16 12 4 2

14 2 1
17 12 5 3

13 3 1 1
12 6 6

18 13 4 1 2
14 2 2 3
16 2 1
12 7 6
13 5 1 8
14 3 2 5

19 14 4 1 1
15 1 3 1
15 2 1 1 1
16 2 1 1
12 8 15
13 6 1 16
14 4 2 23
14 5 1 2

20 15 2 3 5
15 3 1 1 6
16 4 2
16 2 2 3
18 2 1


