Acta Crystallographica Section A

Foundations of

 CrystallographyISSN 0108-7673

Received 2 February 2001
Accepted 16 April 2001

The Fedorov algorithm revised

Yury L. Voytekhovskyt

Laboratory for Mathematical Investigations in Crystallography, Mineralogy and Petrography, Kola Branch of Petrozavodsk State University, Russia, and Laboratory for Platinum Group Elements Ore Genesis, Geological Institute of the Kola Science Centre, Russian Academy of Sciences, Russia. Correspondence e-mail:
voyt@geoksc.apatity.ru

Abstract

All the simple 12- to 20-hedra with no triangular and quadrilateral facets (118 in common) are calculated in the Schlegel projections. Among them, all the fullerenes with 20 to 36 vertices (35 in common) are found. Thus, the γ operation is eliminated from the Fedorov algorithm up to a 21-hedra generating procedure.

(C) 2001 International Union of Crystallography

Printed in Great Britain - all rights reserved

$$
f=f_{5}+f_{6}+\ldots, \quad 2 e=5 f_{5}+6 f_{6}+\ldots
$$

Hence,

$$
f_{5}=(6 f-2 e)+f_{7}+2 f_{8}+3 f_{9}+\ldots
$$

At the same time,

$$
f-e+v=2, \quad 2 e=3 v
$$

Hence,

$$
6 f-2 e=12
$$

Finally,

$$
f_{5}=12+f_{7}+2 f_{8}+3 f_{9}+\ldots
$$

and

$$
\begin{equation*}
f=12+f_{6}+2 f_{7}+3 f_{8}+4 f_{9}+\ldots \tag{1}
\end{equation*}
$$

The diophantine equation (1) was found to have 67 solutions for $f=$ $12-20$ and an obvious restriction $f_{i} \geq 0$. For any solution, all the possible polyhedra were built into the Schlegel projections. The general way to build a polyhedron was to fill in the chosen (basal) facet with other facet projections. As the resulting Shlegel projection is required to save the symmetry of a polyhedron, the most expedient way is to choose a unique facet, if any, as the basal one. For example, in the case of $5_{13} 6_{4} 7_{1}$ polyhedra, the only heptagonal facet was taken as the basal one. In the case of a $5_{14} 6_{4} 7_{2}$ polyhedra, a heptagonal facet was taken as the basal one. In most cases, a basal facet has the greatest number of edges. However, in the case of a $5_{15} 6_{1} 7_{3}$ polyhedron, only the hexagonal facet should be taken as the basal one to save the $3 m$ symmetry of the polyhedron.

Generally, there is no algorithm that fills in the chosen basal facet with other facet projections. To do this, one should use various combinatorial methods. For example, in the simple case of the $5_{18} 9_{2}$ polyhedron, we choose a nonagonal facet as the basal one. Afterwards, we try to fill it in with other facet projections in the assumption that two nonagonal facets are in contact with each other. This leads to nothing. Hence, the basal facet should be surrounded by nine pentagonal facets. Next, we assume that another nonagonal facet is in contact with them in any position. This also leads to nothing. Finally, we build one more ring of pentagonal facets with a nonagonal one

[^0]

Figure 1
All simple 12- to 20 -hedra without triangular and quadrilateral facets in the Schlegel projections. The facet symbols and symmetry point groups are given for the first representatives in the series only, 6- to 9-lateral facets are marked with numbers.

Table 1
The number (n) of polyhedra, if any, related to the diophantine equation (1) solutions.

f	f_{5}	f_{6}	f_{7}	f_{8}	f_{9}	n
12	12					1
14	12	2				1
15	12	3				1
16	12	4				2
	14		2			1
17	12	5				3
	13	3	1			1
	12	6				6
18	13	4	1			2
	14	2	2			3
	16			2		1
	12	7				6
	13	5	1			8
	14	3	2			5
19	14	4		1		1
	15	1	3			1
	15	2	1	1		1
	16		2	1		1
	12	8				15
	13	6	1			16
	14	4	2			23
	14	5		1		2
20	15	2	3			5
	15	3	1	1		6
	16		4			2
	16	2		2		3
	18				2	1

in the centre. This extremely routine procedure was made for all equation (1) solutions and has resulted in 118 polyhedra (Fig. 1). Their numbers, if any, are given in Table 1.

It follows from the latter that a simple f-hedron with $f_{3}=f_{4}=0$ never has i-lateral facets if $f<2 i+2$. However, we neither have proof nor counter-argument to this conjecture. When proven, it could help in further searching for the polyhedra under discussion.

The class of calculated polyhedra contains 35 fullerenes, i.e. simple polyhedra with pentagonal and hexagonal facets only. This important class of polyhedral molecules was specially studied by us (in collaboration with Dmitry G. Stepenshchikov). The symmetry point groups for all 20- to 60 -vertex fullerenes (5770 in common) will be reported in our next paper.

3. Conclusions

All simple 12- to 20 -hedra with no triangular and quadrilateral facets are calculated. Among them, all fullerenes with 20-36 vertices are found. Thus, the γ operation is eliminated from the Fedorov recurrence algorithm up to a 21-hedra generating procedure. This significantly reduces the computer time when searching even for simple 14and 15-hedra.

I acknowledge great benefit from the highly skilled comments made by the referee.

References

Engel, P. (1994). Proc. Rus. Miner. Soc. 3, 20-25.
Fedorov, E. S. (1893). Proc. R. Miner. Soc. St Petersburg, 30, 241-341.
Voytekhovsky, Y. L., Stepenshchikov, D. G. \& Yarygin, O. N. (2000). Granulomorphology: simple 12- and 13-hedra. Apatity: Kola Science Centre.

[^0]: \dagger Correspondence address: 14 Fersman Street, 184209 Apatity, Russia.

